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Abstract
We recently demonstrated that epitaxial interfaces can be formed between periodic and
quasiperiodic materials (Franke et al 2007 Phys. Rev. Lett. 99 036103). Such interfaces exhibit
the same defining characteristic as epitaxial interfaces between commensurate periodic
materials, namely the locking into registry of the two half-crystals’ atomic structures. This real
space characteristic is equivalent to the requirement of a coincidence of reciprocal lattice points.
Here, we explore the characteristics of the potential interfaces within the class of quasicrystals
exhibiting a periodic direction, including decagonal quasicrystals. We derive our results
geometrically from a higher dimensional description, thus providing visual insight into the
underlying concepts. Since the reciprocal lattice of quasicrystalline structures is generated by
more basis vectors than their periodic counterparts’, suitable quasicrystalline interlayers can be
designed to epitaxially link incommensurate half-crystals. We give examples of selected model
structures as illustrations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Modern device technology relies on building well-defined
structures from a range of different materials. Typically, the
best control and device performance is achieved when the
involved interfaces are epitaxial, yielding a perfect registry at
the atomic level. This provides an optimal homogeneity along
the interface, thus avoiding dislocations or other structural or
electronic defects which would be detrimental to the device’s
performance. In the case of periodic crystals, a registry
at the atomic level is achieved when the two half-crystals
share a common interface unit cell, which defines an epitaxial
(commensurate) interface in thin films.

Because quasicrystals, lacking periodicity, have no unit
cell one might have thought this precludes epitaxy between
quasicrystals and periodic materials. However, as we showed
recently [1] it does not, as the essence of epitaxy is not the
common unit cell but a locking into registry at the interface.
The latter describes the fact that the energy of a commensurate
interface has local minima with regard to lateral shifts of one
of the half-crystals with respect to the other [2]. Taking

this as a starting point, we were able to demonstrate that
for interfaces of any combination of periodic or quasiperiodic
crystals, epitaxy is characterized by the half-crystals having
at least two non-collinear interface projected reciprocal lattice
vectors in common. As quasicrystals have an higher number
of reciprocal lattice basis vectors, this has the fascinating
consequence that quasicrystalline interlayers can epitaxially
link incommensurate materials.

In the following subsections we will briefly review the
first experimental realization of an epitaxial interface between
a periodic and quasiperiodic material and the underlying
concepts [1]. In this epitaxial system, the decagonal Al–Ni–
Co quasicrystal forms an interface plane with an orientation
neither parallel nor perpendicular to its periodic axis. We will
explore the nature of such tilted orientations in quasicrystals
including a periodic direction with regard to epitaxy by
utilizing a higher dimensional visual approach.

1.1. Experimental realization: AlAs/Al–Ni–Co

There is a wide range of studies involving film or monolayer
growth on quasicrystal surfaces. A number of these have
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Figure 1. Epitaxial interface between strained AlAs(111) and Al–Ni–Co(102̄2̄4). (a) Interface geometry with faceted substrate (light gray,
α = 35.15◦) and the in-plane orientation of the strained AlAs(111)-film. (b) Al–Ni–Co(102̄2̄4) areal atomic density ρ(z) in the planes
perpendicular to the [102̄2̄4] direction. (c) Al–Ni–Co reciprocal lattice projected onto the (102̄2̄4) interface plane (black circles) and strained
AlAs(111) film reciprocal lattice points (vertices of the mesh). (d) Fourier transform of the top layer of bulk truncated Al–Ni–Co(102̄2̄4),
marked as L(0) in (b). A strong set for potential alternate epitaxy is outlined by squares. The radii of the circles in (c) and (d) are proportional
to the Fourier amplitudes of the atomic density of Al–Ni–Co bulk and single layer L(0), respectively, calculated from the structural model by
Yamamoto and Weber [3].

reported interfaces with a defined relative orientation between
a periodic layer and a quasicrystalline substrate [4–9]. The
orientational alignment in these systems, however, does not
originate from the formation of an epitaxial interface as defined
above. Instead, in these cases it is due to either local
matching of clusters, local symmetry at preferred nucleation
sites, or long length-scale strain modulations localized at
the interface. The orientational alignment described by
Widjaja and Marks [9, 10] is particularly noteworthy as it
results from an interface energy minimization for an extended
(infinite) interface plane. It corresponds to the case of an
interface between periodic systems with slightly differing
lattice constants, which in first order provides a modulation of
the atomic positions at the interface, and at higher order can
generate a dislocation network. These atomic shifts provide
energy minima with respect to rotations of the half-crystals
with respect to each other, yet they do not yield energy minima
with regard to lateral shifts between the half-crystals which are
a characteristic of commensurate epitaxial interfaces.

Recently, however, we have been able to observe full
fledged epitaxy between periodic and quasiperiodic half-
crystals. In the experiment discussed in detail in [1],
exposing the ten fold surface of decagonal Al71.8Ni14.8Co13.4

to a molecular beam of As was shown to lead to the
formation of Al–Ni–Co(102̄2̄4) facets overgrown by strained
AlAs(111) films. The observed interface geometry is depicted
in figure 1(a). The epitaxial nature of the interface was
demonstrated by projecting the known bulk reciprocal lattice
structure of Al–Ni–Co onto the (102̄2̄4) interface plane
(solid black circles in figure 1(b)) and comparing this to
the experimentally determined AlAs(111) reciprocal lattice
structure (vertices of green grid in same figure). The two
half-crystals share the two non-collinear interface projected
reciprocal lattice vectors indicated in the figure, thus fulfilling
the criterion for epitaxy.

The fact that the AlAs(111) film is strained by a few
percent points towards a strong driving force to retain the
atomic registry at the interface. To understand its origin we
considered a simple model for the interface binding energy E
in which interface atoms interact by a pair potential V (r) with
r the lateral displacement. This yields [1]

E(rs) ∝
∫ ∫

ρ1(r1 − rS)ρ2(r2)V (r1 − r2) d2r1 d2r2

∝
∑

G

ρ̂1(−G)ρ̂2(G)V̂ (G)e−iGrS
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Figure 2. Epitaxial interfaces between a periodic and a Fibonacci
chain. (a) Reciprocal lattices. The radii of the black circles are
proportional to the magnitude of the corresponding Fourier
components of the Fibonacci chain. The common reciprocal lattice
vector is G = GFib

11 = G1 = 2π/a. (b) Real space structure for an
attractive interaction (favoring on-top sites). (c) Real space structure
for a relative shift of a/2 with respect to (b). (d) Average distribution
of the Fibonacci chain atoms within the unit cell of the periodic
chain.

with rS the lateral shift of the half-crystals with respect to each
other, ρ1,2 the atomic densities of the two interface layers, ρ̂1,2

and V̂ the respective Fourier transforms, and G the common
reciprocal lattice vectors. This illustrates that the locking
into registry can only be strong if both half-crystal’s structure
factors ρ̂1,2(G) are large for at least one of the common
reciprocal lattice vector G �= 0.

Calculating these structure factors for our experimental
system required identifying a top layer at the interface.
As was reported [1] and will be discussed in detail for a
model system in the next section, the areal atomic density
in a decagonal quasicrystal along a tilted crystallographic
orientation is periodic. For Al–Ni–Co(102̄2̄4) this density
drops to zero periodically thus defining individual layers
(figure 1(c)). Taking the Fourier transform of an individual
layer reveals large structure factors predominantly for those
vectors common to the AlAs(111) interface structure. In order
to understand how this is linked to the real space atomic
structure we briefly review some results for the very simplest
mixed epitaxial system, namely that between a periodic and a
Fibonacci chain.

1.2. Locking into registry

The real space implications of a locking into registry of an
epitaxial interface between periodic and quasiperiodic systems
is best illustrated by considering the interface between a
Fibonacci and a periodic chain. A Fibonacci chain (figure 2(b),
lower row) consists of atoms arranged quasiperiodically along
a line with nearest-neighbor distances L and S with L = τ S
and τ = (1+√

5)/2 the golden mean. The distance L occurs τ

times as often as S, thus yielding an average distance between
atoms of ā = (τ L + S)/(τ + 1) = S(3 − τ ). (A detailed
construction of a Fibonacci chain is presented in section 2.1
below.)

The diffraction pattern of the Fibonacci chain (figure 2(a),
solid circles) is generated by two incommensurate vectors
G10 and G01 = G10/τ . Choosing the basis vector G1 of
the reciprocal lattice of the periodic chain to match G11,
we arrive at the epitaxial interface shown in figure 2. This
particular choice is unique in that the lattice constant a of the
atomic chain is identical to the mean atomic distance ā of the

Figure 3. Higher dimensional construction of the Fibonacci chain and its average distribution of atoms within a periodic unit cell.
(a) Two-dimensional square lattice with atomic surfaces (vertical lines attached to vertices of the grid) and physical space x-coordinate and
perpendicular space y-coordinate. (b) The subset of vertices whose atomic surfaces cut the real space x-axis and the connecting edges.
(c) Projection of structure in (b) onto the x-axis, yielding the Fibonacci chain with its quasiperiodic sequence of long (L) and short (S)
segments. (d) Relation of the average distance ā between Fibonacci atoms to the 2d square lattice. (e) Construction of the average distribution
of Fibonacci atoms in the periodic unit cell. See the main text for details.
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Figure 4. Higher dimensional construction of a periodic stacking of
Fibonacci chains. (a) Square lattice with atomic surfaces and
physical space x-coordinate and non-physical space y-coordinate.
(b) Periodic stacking along the z-axis showing projections of
segments corresponding to those in figure 3(c). (c) View of the 3d
higher space structure. The atomic surfaces are line segments parallel
to the non-physical space y-direction.

Fibonacci chain. The locking into registry is illustrated by the
two different lateral shifts of the chains depicted in figures 2(b)
and (c). In (b) a preference for on-top alignment is apparent,
while in (c) bridge sites are favored. The distribution of the
Fibonacci atoms within the unit cell of the periodic chain P(x)

is shown in panel (d) for alignment (c). Since this distribution
is not uniform a lateral shift of the chains with respect to each
other will modify the interface energy and thus provide the
energetic minima and the locking into registry of the interface
structure.

2. Description from higher dimension

The structural properties relevant for epitaxy, such as the
areal density ρ(z) depicted in figure 1 and the probability

distribution P(�r ) of a quasicrystal’s atoms in an epitaxial
periodic unit cell can be easily calculated numerically from the
quasicrystal’s bulk atomic structure. However, to gain insight
into their origin it is helpful to derive these geometrically for
a representative model structure. This can be done by utilizing
the well established construction of quasicrystals from higher
dimensional periodic structures [11–14].

2.1. One-dimensional structure

We start out with a periodic square lattice with lattice constant
a tilted by an angle α with tan(α) = 1/τ with respect to
an x-axis (figure 3(a)). The x- and y-direction are called
physical and non-physical direction, respectively. In the next
step, atomic surfaces are attached to the vertices of the square
lattice. These atomic surfaces are line segments of length
� = a(cos(α) + sin(α)) which are aligned perpendicular to
the physical space x-direction. The periodic structure is then
cut along the physical space x-direction and the intersections
with the atomic planes yield the atomic sites. By retaining the
edges of the square lattice which link atomic surfaces cutting
the physical plane the generation of the L and S segments from
the two basis vectors of the square lattice becomes apparent
(figures 3(b) and (c)).

This higher dimensional construction of the Fibonacci
chain allows us to understand the origin of the non-uniformity
of the distribution of its atoms in the epitaxial unit cell as
depicted in figure 2 above. For the epitaxial match with
G1 = G11, the lattice constant of the periodic chain is equal to
the mean distance ā and given by the intersection of the x-axis
with the square lattice’s (11)-netplanes as shown in figure 3(d).

In order to derive the average distribution in the unit cell,
we translate the Fibonacci chain by every integer multiple
of ā and record all atoms falling into a single selected unit
cell. Translating the square lattice by ā shifts its vertices
from one (11)-netplane to the next. As the vertex at the
origin is the only vertex in the original square lattice which
is on the x-axis (otherwise the structure would be periodic),
translating the lattice by arbitrary integer multiples of ā will
never yield a vertex shifted exactly onto another. Thus, the
netplanes are covered homogeneously by the shifted vertices.
The atomic surfaces attached to the vertices generate uniform
stripes centered on the netplanes as shown in figure 3(e).
Moving along the physical space x-axis, regions within the
stripe have a uniform probability of finding Fibonacci chain
atoms in the corresponding part of the periodic chain’s unit
cell, while regions between stripes yield a zero probability.
The method of calculating the probability P(x) used here
mirrors that introduced by Steurer and Haibach [15] for the
determination of the periodic average structure.

2.2. Tilted orientation of stacked Fibonacci chains

The experimental system in which we observed epitaxy
featured a decagonal quasicrystal, which is characterized by
a periodic stacking of quasicrystalline planes. The interface
plane was tilted with respect to these. To capture these essential
features in a model system we explore a periodic stacking of
Fibonacci chains (figure 4). As above, the Fibonacci chains

4
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Figure 5. Derivation of the atomic areal density distribution along a tilted orientation. (a) Atomic physical space structure and broadened
netplanes for an orientation given by the vector �n. (b) Surface normal �n shown in a 3d view of the periodic higher dimensional structure with y
the non-physical axis. The angle γ between x-axis and �n (and between z-axis and netplanes) is given by tan γ = ā/d . (c) Projection of a
single x,y-plane onto the �n,y-plane. The gray bands reflect the area into which projections of all atomic surfaces including those with z �= 0
fall. (d) Resulting areal density along the surface normal �n with periodicity of δ = d sin γ .

run along the x-direction. They are stacked with periodicity
d along a perpendicular z-direction. The higher dimensional
periodic structure describing this is a periodic stacking of a
square lattice with corresponding atomic surfaces (figure 4(c)).
The non-physical direction is again the y-direction and the
physical space structure is generated by a cut along the x, z-
plane.

We now consider a tilted crystallographic orientation
of this two-dimensional quasicrystal, choosing an angle γ

between surface normal �n and z-direction to give tan(γ ) =
ā/d as illustrated in figure 5(b). This corresponds to a (111)
orientation. Our first interest is to calculate the x-integrated
atomic density along the surface normal �n. For this, we initially
project the periodic 3d structure onto the �n,y-plane indicated
in figure 5(b). A single square lattice corresponding to a single
Fibonacci chain yields the projection in figure 5(c). Projecting
all other square lattices onto the same �n,y-plane projects all
vertices onto the projected (11)-netplanes in a similar fashion
as discussed in regard to figure 3. This is the case because
the intersection of the x-axis with each of the square lattices
coincides with one of its respective (11)-netplanes. The first
intersection is at the origin, the next is through the first (11)-
netplane by definition of the angle γ , all others intersect
at netplanes because both z-stacking and netplane stacking
are periodic. The shifts of the vertices along the netplanes
are incommensurate to the distance between vertices along a

netplane of an individual square lattice. Thus, projecting all
atomic surfaces generates the stripes shown in figure 5(c). The
final step to arrive at the density is to cut the projected structure
along y = 0. This yields the periodicity and box-like shape of
the x-integrated density shown in figure 5(d). The periodicity
is δ = d sin(γ ).

Having identified the individual broadened layers in our
model structure, we come to the question of the distribution
of the atoms within one of these layers, which determines
the interface structure and energy. Because the empty space
between layers is as extended as the layers themselves, we can
pick any atom and define its layer as those atoms within a band
of ±δ/2 with respect to the surface normal direction �n. As can
be seen in figure 6(b), in our simple case, the lateral distance
between neighboring atoms in a given layer takes one of two
values L11 or S11 generated by a combination of stepping along
the Fibonacci chain by L or S, respectively, and stepping a
distance d onto the next chain. The sequence within the layer
is again a Fibonacci sequence, the L11 and S11 segment lengths,
however, are no longer related by the factor τ .

While we have characterized the sequence explicitly in
this simple case, for epitaxy the critical information is the
distribution of the quasicrystalline layer’s atoms within the
periodic unit cell of the counterpart of the interface. This can
be derived geometrically. First, consider the real space atomic
structure of figure 6(a). From this we want to generate the

5
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Figure 6. Atomic sites in the surface layer of a tilted orientation.
(a) Tilted atomic configuration for �n parallel to G111 as in figure 5.
(b) Construction of a single broadened netplane, see the text for
details.

lateral distribution of the atoms of a single layer. This can
be achieved by attaching atomic surfaces (segments of length
δ, parallel to �n, the z ′-direction) to all atoms as shown in
figure 7(a). A cut along one of the horizontal lines would
then yield the lateral distribution of atoms in a single layer
by projecting the atoms of a single layer onto the line. In
order to be able to determine the distribution of these projected
atomic sites this procedure has to be performed based on the
3d periodic higher dimensional structure. Thus, the atomic
surface attached to every vertex of the square lattices will now
in fact be a 2d surface extending by � along the non-physical
y-direction and by δ along the z ′-direction (see figures 7(b)
and (c)). The three required steps are: translations by the
periodic unit cell size along x ′, cut along y = 0, and cut
along z ′ = 0. The periodic unit cell size depends on the
epitaxial interface match selected. Here we chose again an
interface with an average of one quasicrystalline atom per
unit cell. This yields the unit cell size b̄ = d/ cos(γ ) as
depicted in figure 7(b). Translation by b̄ along x ′ corresponds
to translating by ā along x and by one unit cell along z,
such that the translations yield an x,y-plane (figure 7(d)) with
identical stripes as in the single Fibonacci chain (figure 3(e)).
In the present case, however, the 2d atomic surfaces extend
along the z ′-direction. This results in the x,z-plane depicted
in figure 7(e). Finally this is cut along the x ′-axis yielding the

probability P(x ′) to find an atom of the tilted layer at location
x ′ within the periodic unit cell (figure 7(f)). It is particularly
noteworthy that the lateral distribution of the layer’s atoms
within the periodic unit cell is significantly more localized than
in the case of the Fibonacci chain itself.

3. Quasicrystalline interlayers

Having gained a detailed understanding of the epitaxial inter-
face properties of quasicrystals including periodic directions,
we now consider the implications for quasicrystalline interlay-
ers linking half-crystals of periodic materials. Discussing epi-
taxy, the first question must be in regard to the interface pro-
jected reciprocal lattice vectors.

We again take periodically stacked Fibonacci chains as an
example. Its reciprocal lattice is spanned by a vector Gp along
the periodic direction and the two τ -scaled vectors G10 and
G01 pointing along the chains. When projecting the latter two
onto the interface plane their τ -scaling is retained as both are
shortened by the same factor. Since the interface is required to
have a crystallographic orientation (and we do not consider the
trivial case of the interface normal perpendicular to the periodic
direction), the projection of Gp is a linear combination of the
other two and can therefore be ignored. Thus, independent
of the selected interface orientation, the interface projected
reciprocal lattice structure is generated by two basis vectors
related by τ and we can confine our discussion to the interface
normal parallel to the periodic direction as shown in figure 8.
Similarly, if we consider a decagonal quasicrystal, tilting the
interface orientation along a high symmetry axis does not
provide new ratios between reciprocal lattice vectors along that
direction.

While the tilt orientation does not impact on the relative
lengths of the interface projected reciprocal lattice vectors, it
does, of course, have a strong impact on the atomic structure
of the interface layer. In figure 6 we saw, for example, that
the ratio of the observed nearest-neighbor distances can change
from τ to smaller values. The range of possible ratios also
includes commensurate values (rational numbers). Figure 9
illustrates an example of a Fibonacci sequence of nearest-
neighbor distances L and S with L = 2S. This provides an
interface with interface atoms of the quasicrystalline interlayer
perfectly aligned in the bridge sites of a periodic structure with
interface lattice constant of S (top interface in figure).

Linking half-crystals with interface lattice vectors
not scaling with τ , on the other hand, would require
quasicrystalline structures beyond those based on Fibonacci
sequences. However, it is always possible to construct a
suitable model quasicrystalline structure. Were we interested
in linking (100) and (110) half-crystals of the same simple
cubic material, for example, then we would need to generate
a quasicrystalline structure with a

√
2 scaling of its in-plane

reciprocal lattice vectors such as the one shown in figure 10.
We have seen that epitaxy provides a registry at the

interface. In periodic materials this registry extends across
interlayers such that in an epitaxial ABC system there is
also a registry between A and C. Thus, if AB and BC are
epitaxial interfaces, so is AC. In systems with a quasicrystalline
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Figure 7. Average distribution of surface layer atoms in a commensurate periodic unit cell. (a) Broadened netplanes with atomic surfaces
generating a projection of the atoms onto their corresponding netplane. (b) Higher dimensional structure in 3d view with 2d atomic surface
attached, only one of which is shown for clarity. b̄ is the size of the unit cell of the commensurate structure. (c) Rectangular atomic surface
with length � along the y-direction, generating the Fibonacci sequences, and height δ along the z-direction, generating the projection onto a
single netplane. (d) Cut along an x,y-plane. Black vertical lines are the intersections with the 2d atomic surfaces, the gray bands the areas
onto which these fall when shifting by ā along x , which corresponds to the shift of b̄ along the interface. (e) Cut along the x,z-plane (not a 3d
view!) with the gray parallelograms resulting from the y = 0 cut through the stripes of (d) and extended along z to a length of δ in accordance
with (c). (f) Resulting distribution in the unit cell of size b̄ by cutting (e) along the x ′-axis.

Figure 8. Quasicrystalline interlayer epitaxially linking
incommensurate materials. (a) Direct non-epitaxial interface between
the two incommensurate materials. The nearest-neighbor distances in
the interface top layers scale as 1:τ . (b) Same half-crystals with a
quasicrystalline interlayer which provides an epitaxial match to both
simultaneously.

interface linking incommensurate half-crystals this is clearly
not the case. This implies that similar to the direct
incommensurate interface (figure 8(a)) any arbitrary relative

Figure 9. Quasicrystalline interlayer with L = 2S providing an exact
matching of the interlayer’s atoms to the bridge sites of the top
half-crystal.

shift of the half-crystals can provide the same minimum energy
when linked by the epitaxial interlayer. There is, however,
a crucial difference. Without an interlayer, the half-crystals
can slide along each other without having to overcome an
energetic barrier. With the interlayer in place, this is no
longer possible. When shifting the top half-crystal by small
distances the interlayer has to be shifted by arbitrarily large
distances in order to retaining a minimum energy configuration
of the interfaces. Shifting the interlayer with respect to
both half-crystals, on the other hand, requires overcoming the
energy barriers resulting from the expitaxial match at these
interfaces.

7
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Figure 10. Quasicrystalline interlayer epitaxially linking (100) and
(110) half-crystals of a simple cubic material.

To illustrate this, we consider a system resembling figure 8
with interface lattice constants a and τa of the top and
bottom half-crystals, respectively, and 2π/a and 2π/(τa) the
corresponding common interface projected reciprocal lattice
vectors. Then the minimum energy configuration with the top
half-crystal shifted by εa would require a shift of the interlayer
by mτa such that εa = mτa − na, with m, n integers in
order to achieve the minimum energy registry at the respective
interfaces. Small changes in ε require arbirtarily large changes
in n, m to retain ε = mτ − n. To achieve a minimum energy
configuration at a shift of ε < 0.1, for example, the interlayer
would have to be shifted by a distance of 5, 8, or more lattice
constants τa, where 5, 8, . . . are Fibonacci numbers.

4. Conclusions

The study of epitaxy between periodic and quasiperiodic
materials provides fundamental insight into the nature of
epitaxial interfaces. It illustrates that epitaxy is governed by a
coincidence of reciprocal lattice points and that the existence
of a common unit cell in epitaxial interfaces of periodic
materials is simply a consequence of their periodicity and not
the primary characteristic of epitaxy. An understanding of
epitaxy between quasiperiodic and periodic materials opens the
fascinating possibility of epitaxially linking incommensurate
materials through quasicrystalline interlayers.

Exploring a model system of stacked Fibonacci chains
we gained insight into epitaxy of decagonal and other
quasicrystals featuring a periodic direction. The periodic
axis generates a periodic netplane structure perpendicular
to mixed crystallographic interface orientations as illustrated
geometrically in a higher dimensional description. The non-
uniformity of the lateral distribution of the interface atoms
within the unit cell of the periodic interface side reflects the
epitaxial match and the energy gained by the atomic locking
into registry at the interface. For our chosen (111) orientation
this distribution was found to be significantly more localized
than for the non-tilted orientation. This hints at an energetic
preference towards interfaces with tilted orientation, such as

the one observed experimentally in strained AlAs(111) on Al–
Ni–Co(102̄2̄4).
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